
MATAA, a free computer-based audio analysis
system

Matthias S. Brennwald

June 20, 2007

Disclaimer: This is a pre-print version of the a paper published
in audioXpress 7/2007 (Matthias S. Brennwald, MATAA: A Free
Computer-Based Audio Analysis System, audioXpress 7, 36-41, 2007.
http://www.audioxpress.com/magsdirx/ax/addenda/
media/brennwald2806.pdf). The audioXpress publication suffers
from poor typesetting, which makes some the formulae and computer-code
examples hard to read. I therefore posted this version of the article on
www.audioroot.net with the intention of providing a properly typeset
version.
Please note the following legal notice as it appears in the audioXpress journal
(and adhere to it): “Each design published in audioXpress is the inellectual
property of its author and is offered to readers for their personal use only. Any
commercial use of such ideas or designs without prior permission is an in-
fringement of the copyright protection of the work of each contributing author.”

I needed an audio analyzer to test my loudspeakers and amplifiers. However, the systems
currently available on the market are either not flexible enough for my needs, don’t work with
my preferred computer platform, or cost more than what I am willing to spend. I therefore
started a new DIY project ‘building’ my own audio analysis system using the soundcard
of my personal computer. After a while, the project grew bigger and I realized that I have
produced a very versatile and powerful audio analyzer, which I call “Mat’s Audio Analyzer”
(MATAA).

The operating mode of MATAA is the same as with many other comptuer-based audio
analysis systems. Apart from that, however, MATAA is a little different from most of these
systems in many ways. For instance:

1. MATAA does not rely on proprietary hardware (such as an expansion card or a ‘switch
box’) to handle the sound input/output and the electrical connections to the device
under test (DUT). In contrast, you can use whatever soundcard, cables, switches, plugs,
amplifiers, etc. you think are appropriate for your needs.

1

http://www.audioxpress.com/magsdirx/ax/addenda/media/brennwald2806.pdf
http://www.audioxpress.com/magsdirx/ax/addenda/media/brennwald2806.pdf
../../../../Matlab/MATAA_DEV/aX_paper/www.audioroot.net

Computer

DUT

Te
st

To
ne

M
at

la
b

or
 O

ct
av

e
ru

nn
in

g
M

AT
AA

So
un

d
ca

rd

Figure 1: Block diagram illustrating the operating mode of MATAA. MATAA sends and
receives the test signal data to and from TestTone, which handles the sound output and input
with the soundcard. The soundcard simultanesouly feeds the test signal to the device under
test (DUT) and records its response.

2. MATAA does not rely on a specific computer platform, because MATAA runs from
within MATLAB or GNU Octave. These ‘number-crunching’ programs run on vir-
tually all current platforms (see Sec. 1.2 if you are not familiar with MATLAB or
Octave).

3. MATAA is free software released under the GNU General Public License1 (GPL). You
are free to study the source code, adapt it to your needs, and release your improved
version under the GPL. You can download MATAA from mataa.sourceforge.
net.

MATAA is essentially a collection of MATLAB/Octave programs, which provide the
building blocks for analysis procedures to test all kinds of audio devices. Further, MATAA
contains ready-made scripts using these building blocks to conduct typical analyses and tests
(e.g. to measure the impulse response and the frequency response of a loudspeaker). Alterna-
tively, specific test routines can be designed to efficiently analyze virtually anything that can
be analyzed with audio test signals.

1 How MATAA works
Similar to most other computer-based audio analysis systems, MATAA feeds a test signal to
the DUT and simultaneously records its response signal, which is then analyzed as desired
(see Fig. 1, which I will be explain in more detail below). One notable strength of MATAA
is that one can use MATLAB/Octave to generate any kind of test signal and then feed it to
the DUT. Together with the wide range of MATLAB/Octave tools for data processing and
analysis, this allows carrying out virtually any analysis one can think of.

MATAA does not have a whizz-bang graphical user interface. While this may seem a bit
anachronistic for todays computer software, the lack of a graphical user interface is one of the
reasons why MATAA is so flexible. Have you ever experienced a program that couldn’t do
what you wanted because the corresponding button was missing, although the functionality
would have been built into the software? Not with MATAA.

2

../../../../Matlab/MATAA_DEV/aX_paper/mataa.sourceforge.net
../../../../Matlab/MATAA_DEV/aX_paper/mataa.sourceforge.net

1.1 MATAA soundcard requirements
In principle, any soundcard that allows simultaneous sound input and output (“full duplex
sound”) is suitable for use with MATAA. However, the quality of the soundcard will of course
crucially determine the quality of the measured data. For instance, the maximum sampling
rate determines upper frequency limit; the signal/noise ratio and the sampling bit depth de-
termine the dynamic range; and, depending on the intended type of analysis, the number of
input and output channels available may also be important (stereo soundcards are suitable for
the vast majority of possible applications).

1.2 MATLAB and Octave
MATLAB and Octave are are ‘number-crunching’ programs that provide an all-in-one en-
vironment for analysis, processing and graphing of data. Both MATLAB and Octave run
on various computer platforms and operating systems. They provide a powerful program-
ming language, which, compared to many other programming languages, is easy to learn
and understand. Programs written for MATLAB are (largely) compatible with Octave (and
vice versa). While MATLAB and Octave are very similar, they differ in one important point:
MATLAB is a commercial product by The MathWorks company2, wheras Octave is free
software released by the GNU project3.

One shortcoming of both MATLAB and Octave with respect to MATAA is their lim-
ited capabilities for sound input and output. While both MATLAB and Octave do provide
commands to play and record sound, these commands do not work on all operating systems.
Furthermore, simultaneous sound input and output, a prerequisite for MATAA, is not well
implemented. I therefore wrote a small program called TestTone that handles the sound in-
put and output for MATAA externally from MATLAB/Octave (see Fig. 1). MATAA talks
to TestTone from within MATLAB/Octave, so the MATAA user does not need to care about
TestTone. TestTone is based on PortAudio4, a freely available library that provides a cross-
platform sound input/output. It is therefore straightforward to enable sound intput and output
for MATAA on all computer platforms supported by PortAudio. At the time of this writ-
ing, howeverm I have compiled TestTone for MacOS X only, because I don’t have a com-
puter running other operating systems at my disposal (e.g. Windows or Linux). Shu Sang
(sangshu@hotmail.com), one of the first users to apply MATAA for his work, has agreed to
compile TestTone for Windows (thanks Shu!). I therefore expect MATAA to support sound
input and output on Windows at the time this article goes to print. If someone agrees to
compile TestTone for any other computer platform (e.g. Linux) and provide it to the public
through the MATAA website, he/she is more than welcome to do so!

2 Using MATAA
In this section, I will show how to operate MATAA and how MATAA works in real-world
applications. I ran these examples using Octave, but the operation and results would have
been exactly the same with MATLAB. I used an Apple PowerBook G4 laptop computer with

3

-1.0

-0.5

 0.0

 0.5

 1.0

 0.2 0.2004 0.2008 0.2012

Si
gn

al

Time (s)

R

C

Soundcard output

Soundcard input

R
C

 filter
-20

-10

 0

10 100 1k 10k
-180
-90
0
90
180

M
ag

ni
tu

de
 (d

B)

Ph
as

e
(d

eg
)

Frequency (Hz)

Figure 2: RC filter analysis. Top: setup of the RC filter and sound hardware. Center: square-
wave response of the RC filter. Bottom: Frequency response of the RC filter (magnitude and
phase corrected for excess phase).

its generic built-in soundcard. This soundcard supports various sampling rates in the range
of 32–96 kHz with a sample depth of up to 24 bits. By feeding sine signals of varying fre-
quencies from an analog signal generator to the soundcard input and analyzing the digitized
result, I found that this soundcard has an efficient anti-aliasing filter, whose cut-off frequency
is automatically adjusted to the sampling rate selected.

2.1 RC high-pass filter
In this first example, I’ll use MATAA to test a simple RC high-pass filter with R = 4.79 kΩ

and C = 220nF. While not rocket science, this example will serve as a good introduction to
see how MATAA works. Fig. 2 shows the RC filter and how it is connected to the soundcard.

To start, I will demonstrate how feed a square-wave signal to a simple RC filter and
measure its output signal. Using the MATAA command mataa_signal_generator, I
created a 0.1 s long square-wave signal with a frequency of 1 kHz and a sampling rate of
96 kHz by typing the following command at the MATLAB/Octave prompt:

s = mataa_signal_generator(’square’,96000,0.1,1000);

4

The samples of the square-wave signal are now stored in the MATLAB/Octave variable s,
but the signal has not yet been fed to the soundcard or the RC filter.

The mataa_measure_signal_response command feeds the square-wave signal to
the input of the RC filter and simultaneously records the response signal at the output of the
filter:

res = mataa_measure_signal_response(s,96000);

The samples of the response signal are now stored in the variable res. Fig. 2 shows one cycle
of the response signal (this figure was created using the mataa_plot_signal command,
but the standard MATLAB/Octave plot command may be used just as well). Apart from
the slight high-frequency ringing, the shape of the signal looks exactly as expected for the
RC high-pass filter. The high-frequency ringing is due to the steep anti-aliasing filter of my
soundcard (I will discuss how to deal with signal distortions due to the anti-aliasing filter or
other artifacts introduced by the sound hardware in sections 2.2 and 2.4). In summary, typing
only three commands was enough to create a test signal, feed it to the RC filter, record the
response signal, and plot the result.

In the next step, I will demonstrate how to measure the impulse response of the filter
and how to determine the transfer function of the filter in the frequency domain. By typing
the following three commands, MATAA measures the impulse response using a white noise
signal and calculates the frequency response (magnitude and phase) of the RC filter:

w = mataa_signal_generator(’white’,96000,0.3);
h = mataa_measure_IR(w,96000);
[mag,phase,f] = mataa_IR_to_FR(h,96000);

On the first line, a white-noise signal w with a sampling rate of 96 kHz and a length of 0.3 s
is generated. On the second line, this white-noise signal is used to measure the impulse re-
sponse of the RC filter using the MATAA command mataa_measure_IR. This command
first feeds the signal in w to the RC filter and records the response of the RC filter (anal-
ogously to the above square-wave test). The response signal is then deconvolved from the
original signal (w), which results in the impulse response h of the RC filter. One the third line,
mataa_IR_to_FR is used to transform the time-domain impulse response to the frequency
response using the Fourier transform (magnitude mag and phase phase as function of fre-
quency f.). The resulting frequency response (Fig. 2) corresponds to the expected first-order
high-pass transfer function of the RC filter.

Note that the computer needs some time to process and feed the test-signal data to the
sound output. Also, while not the case in this example, the signal may be further delayed
by the DUT itself or due to long signal travel times in the measurement setup (e.g. the time
needed for a signal to travel from a loudspeaker to a microphone). If the signal recording stops
immediately after the last sample of the test signal has been output from the audio output, the
recoding of the DUTs output signal will therefore be truncated. By default, MATAA therefore
extends the recording of the test signal by 0.1 s before and after the test-signal output to avoid
the recording to be cut off (different delay values may be specified).

5

A

B

R

LS

Soundcard output

Soundcard input

DUT

REF

 0

 20

 40

 60

 80

10 100 1k 10k
-180
-90
0
90
180M

ag
ni

tu
de

 (O
hm

)

Ph
as

e
(d

eg
.)

Frequency (Hz)

Figure 3: Loudspeaker impedance analysis. Top: measurement setup. Bottom: result of
impedance measurement for a Fostex FE108Σ driver in free air.

In the frequency domain, this delay in the DUT output signal corresponds to a phase shift
that increases linearly with frequency. In our RC-filter example, we know that the true phase
shift is virtually zero at frequencies much higher than the cutoff frequency. The excess phase
due to the signal delay can therefore be computed from the measured phase and the expected
(zero) phase. By specifying the frequency range where phase is expected to be zero (e.g 5–
20 kHz), the following command removes the excess phase, leaving only the phase response
of the RC filter (the so called minimum phase, Fig. 2):

phase = mataa_phase_remove_trend(phase,f,5000,20000);

As an alternative, MATAA also allows using the Hilbert transform to determine the min-
imum phase from the magnitude of the frequency response.

2.2 Loudspeaker impedance
Fig. 3 shows the measurement setup to measure the electrical impedance of a loudspeaker5

(or, in fact, anything else). The sound output is connected to a series combination of the
loudspeaker and a resistor, which acts as an impedance reference. The value of the reference
resistor should be of the same order as the impedance of the loudspeaker.

In contrast to the setup in Fig. 2, both stereo channels of the sound input are used. One
channel records the signal voltage across the loudspeaker (DUT channel), while the other
records the signal voltage at the sound output, which will be used as a reference (REF chan-
nel). By default, MATAA allocates the left channel to the DUT and the right channel to REF.
The purpose of using the second channel (REF) is to make the analysis immune to distortions
of the original test signal by the sound output electronics. Instead of comparing the DUT

6

signal to the original test signal generated by MATAA (as in the RC-filter example of 2.1),
the DUT signal is compared to the REF signal, i.e. to the true signal applied to the DUT.

Many soundcards are not designed to deliver undistorted output when directly driving
loudspeakers or similar low-impedance loads. The REF signal may therefore be distorted
with respect to the original test signal generated by MATAA. Furthermore, as illustrated in
Sec. 2.1, the anti-aliasing filter of the sound input may also distort the test signal. This
distortion problem can be sidestepped by comparing the DUT signal to the REF signal rather
than the original MATAA signal, because the souncard distortion affects both the DUT and
REF signals in the same way.

The reference resistor R and the loudspeaker with its impedance Z constitute a voltage
divider between the soundcard output and ground (see Fig. 3). UA is the voltage between
point A and ground (i.e. the voltage across the loudpspeaker). UB is the voltage between
point B and ground (i.e. the voltage across the loudspeaker and the reference resistor). The
ratio of these two voltages is UB/UA = (R+Z)/Z. Solving this equation for the loudspeaker
impedance gives:

Z = R
UA

UB−UA

For a sinusoidal test signal, UA and UB reflect the amplitudes of the sine signals at points
A and B. Note that the sine signals may show a phase shift due to the complex nature of the
loudspeaker impedance. Mathematically, this is expressed with complex valued UA and UB.
For non-sinusodial signals, UA and UB can be computed as a function of frequency using
the fourier transform of the signals measured at points A and B. Inserting these frequency-
dependent values in the above equation then yields the loudspeaker impedance Z as a function
of frequency5.

This procedure to determine the frequency-dependent impedance of a loudspeaker (or
any other DUT) is implemented in the MATAA tool mataa_measure_impedance. With a
reference resistor R = 8.6 Ω (that’s what came out of my parts box), the following command
measures the loudspeaker impedance (magnitude mag and phase phase) in the frequency
range from 10–10000 Hz:

[mag,phase,f] = mataa_measure_impedance(10,10000,8.6);

By default, this command uses a sine-sweep test signal of appropriate length, selects a suit-
able sampling rate, and smoothes the result in 1/48-octave bands (other values may be speci-
fied). The smoothing attenuates the noise that will be picked up by the loudspeaker, because it
also acts as a microphone. Fig. 3, which was generated with the mataa_plot_impedance
command, shows the result for a Fostex FE108Σ full-range driver operated under free-air
conditions.

2.3 Acoustic loudspeaker analyses
In this section, I will demonstrate how to measure the impulse response of a loudspeaker,
and how to calculate the step response, the anechoic frequency response and a cumulative
spectral decay diagram (‘waterfall plot’) of the loudspeaker. I recommend the book by Joe

7

D’Appolito5 for a thorough and well written introduction to the methods and concepts in-
volved in these analyses (and everything else you ever wanted to know about loudspeaker
testing).

Fig. 4 shows the setup to measure the impulse response of a loudspeaker (the same Fostex
FE108Σ as in Sec. 2.2). Both the microphone (a Behringer ECM8000) and the loudspeaker
were mounted 90 cm above the floor, with a distance of 100 cm in between each other. Note
that the loudspeaker is driven through a power amplifier to buffer the soundcard output sig-
nal. In contrast to the impedance analysis (Sec. 2.2), calibration of the analysis using the
REF channel is therefore not mandatory. For the sake of simplicity, I therefore decided not
to use the REF channel, although MATAA does allow calibrating the impulse-response mea-
surement using the REF channel.

Acoustic analyses can be prone to environmental noise. I therefore used a maximum
length sequence (MLS) test signal to achieve a good signal/noise ratio for the impulse-
respone measurement. Other signals like pink or white noise are suitable, too. The following
commands first create an MLS test signal (s, with a length of 214− 1 = 16383 samples),
which is then used to measure the impulse response h of the loudspeaker using a sampling
rate of 96 kHz (analogous to the RC-filter example in Sec. 2.1):

s = mataa_signal_generator(’MLS’,96000,0,14);
h = mataa_measure_IR(s,96000);

Note that the impulse response in h will show a delay due to the travel time of the test
signal from the loudspeaker to the microphone (about 2.92 ms for a distance of 100 cm be-
tween the driver and the microphone). The following two commands remove this delay and
shorten the impulse response to a length of 5 ms

t0 = mataa_guess_IR_start(h,96000);
h = mataa_signal_crop(h,96000,t0,t0+0.005);

On the first line, the start time (t0) of the impulse response starts is determined automatically.
On the second line, the impulse response is cropped to the range between t0 and t0+5 ms.

Fig. 4 shows the resulting impulse response, which is followed by echoes from the floor
and the walls of my room. The first echo occurs at about 3.1 ms, which corresponds to the
time delay of the echo from the floor with respect to the direct sound from the loudspeaker.
The echoes need to be removed to determine the anechoic frequency response. The simplest
method to do this is to shorten the impulse response to the time range that is free of room
echoes (i.e. 0–3 ms):

h = mataa_signal_crop(h,96000,0,0.003);

Alternatively, MATAA also provides a tool to multiply the impulse response by various types
of window functions in order to attenuate the echoes while retaining the anechoic part of the
signal. For the sake of simplicity, however, I won’t discuss signal windowing here.

The impulse response is now free of room echoes, but still needs to be corrected for the
frequency response of the microphone. This is done as follows:

8

h = mataa_microphone_correct_IR(’Behringer_ECM8000’,h,96000);

This command reads the frequency response of the microphone from the specified ASCII
file and uses these data to correct the impulse response. After this correction, the echo-free
impulse-response can now serve as the basis for various analyses, such as those shown in
Fig. 4:

• Step response:

hs = mataa_IR_to_SR(h,96000);

• Frequency response (anechoic) smoothed to 1/24 octave bands (magnitude and phase):

[mag,phase,f] = mataa_IR_to_FR(h,96000,1/24);

(See 2.1 on how to determine the minimum phase.)

• Cumulative spectral decay diagram (waterfall plot) with 30 lines covering the spectral
decay of the impulse response during the full anechoic range (3 ms):

T = linspace(0,0.003,30);
[mag,f,T] = mataa_IR_to_CSD(h,96000,T,1/24);

2.4 Amplifier distortion
Fig. 5 shows the measurement setup to analyze the harmonic distortion of an amplifier. The
amplifier output is connected to a load resistor RL = 7.6Ω and a potentiometer RG = 4.7kΩ

to attenuate the output signal of the amplifier (otherwise the sound input would be overloaded
due to the gain of the amplifier). Again, I chose these values because that’s what came out of
my box.

MATAA provides the mataa_measure_HD(f1,T,fs,N) program to measure the har-
monic distortion products and total harmonic distortion (THD) at a given base frequency.
This command feeds a sine signal to the DUT (f1 is the frequency of the sine, T is its length,
fs is the sampling rate, N is the number of harmonics to be included in the analysis). The
program then determines the Fourier spectra of the resulting DUT and REF signals at the
soundcard input. These spectra are then normalized such that the amplitude of the base
frequency (f1) is k1 = 100%. To correct for possible distortion artifacts introduced by the
soundcard, the REF spectrum is subtracted from the DUT spectrum, yielding in the ‘true’
distortion spectrum of the DUT. Finally, the program returns the amplitudes k2,k3, . . . ,kN of
the harmonics and the THD, which is defined here as the geometric sum of the harmonics:

THD =
√

k2
2 + k2

3 + . . .+ k2
N (note that other definitions exist).

In the current example, I will demonstrate how to measure THD and the first 5 harmonics
(k2,k3, . . . ,k5) as a function of frequency. To this end, the distortion analysis is repeated at
32 different frequencies in in the range of 30–9600 Hz. I accomplished this by putting the
following commands into a MATLAB/Octave script file:

9

LS

Soundcard output

Soundcard input

P

M

-0.4

 0

 0.4

 0.8

0 1 2 3 4 5

Im
pu

ls
e

re
sp

on
se

Time (ms)

echoes

Time (ms)

-1

 0

1

2

3

0 1 2 3

St
ep

 re
sp

on
se

-60

-40

-20

0

1k 10k

M
ag

ni
tu

de
 (d

B,
 re

l.
2

kH
z)

Frequency (Hz)

1k 10k

0
1

2
3

-40

-20

0

de
lay

 (m
s)

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

Figure 4: Acoustic loudspeaker analysis. From top to bottom: measurement setup (P:
power amplifier, M: microphone amplifier, LS: Fostex FE108Σ loudspeaker in free air), im-
pulse response (with room echoes), step response (with echoes truncated, note the different
time scale), anechoic frequency response, and cumulative spectral decay diagram (‘waterfall
plot’).

10

0.01

0.1

1

1000100

THD

k2

k5 k4

k3
D

is
to

rti
on

 (%
)

Frequency (Hz)

Soundcard output

Soundcard input

DUT

REF

RL
RG

Amp (DUT)

Figure 5: Distortion analysis. Top: measurement setup (RL: load resistor, RG: potentiometer
to attenuate and adjust the signal level for the sound input). Bottom: result of distortion
measurement for my Quad II tube amplifier.

Nf = 32; Nk = 5; fs=96000;
f = logspace(log10(30),log10(9600),Nf);
thd = repmat(NaN,1,Nf); k = repmat(NaN,Nk,Nf);
for i=1:Nf

[thd(i),k(:,i)] = mataa_measure_HD(f(i),0.1,96000,Nk);
end

On the first line, the number of frequencies at which distortion is to be analyzed (Nf) is set
to 32, the number of harmonics to be analyzed (Nk) is set to 5, and the sampling rate (fs)
is set to 96 kHz. On the second line, a list (f) of the frequency values within the range of
30–9600 Hz is created (the frequeny values are distributed logarithmically). On the third line,
the variables to hold the THD data (thd) and the distortion harmonics (k) are initialized with
empty values (NaN). The last three lines constitute a loop in which the THD and distortion
harmonics are analyzed repeatedly at the increasing frequencies in f.

I used the above MATLAB/Octave script to analyze the distortion of my Quad II tube
amplifier. I set the output power to 13.9 W (at higher power clipping becomes visible on the
scope). The result of the distortion analysis is shown in Fig. 5. Note that the resulting THD
is nicely in line with the specified6 THD value of ∼0.2% at 700 Hz and 12 W output.

3 Closing remarks
The versatility of MATAA and the lack of a graphical user interface may (wrongly) suggest
that operation is cumbersome and less streamlined than with other computer-based audio an-

11

alyzers. In contrast, these peculiarities are one of the reasons why I prefer MATAA over
other audio analysis systems. On the one hand, MATAA can be made to conduct virtually
any analysis one can think of, while on the other hand, one can save the necessary steps for
a specific analysis to a MATLAB/Octave script file so that the analysis can be repeated by
simply running this script. In addition, MATAA already includes several scripts that auto-
matically conduct some typical analyses. MATAA therefore offers ‘plug-and-play’ for these
applications and allows new users to get familiar with MATAA. Finally, from my own expe-
rience, I have the impression that MATAA forces the user to think first about how to conduct
the analysis best. This ultimately leads to a better understanding of the analysis and therefore
improves the quality of the results and their interpretation.

I would like to stress that you shouldn’t abuse your soundcard. Things like shortening the
soundcard output usually does not destroy anything, but too much voltage at the soundcard
input will. While a few volts won’t do any harm, I have learned the hard way that a capacitor
with a maximum voltage of 100 V is not suitable to protect the soundcard from a 400 V B+
voltage in a tube amplifier (I tried to analyze the ripple voltage of the B+). The best way
to protect your soundcard is to think twice before applying a signal to it. Also, inserting a
voltage limiter just before the soundcard input may be a good idea. For instance, grounding
the soundcard input through two series-connected 5-V Zener diodes with reversed polarity
will limit the signal to ±5 V (but the Zeners will also blow up if too much voltage is applied
for too long). Finally, if you are paranoid, you can minimize the risk of destroying the entire
motherboard of your computer by using an external soundcard connected to your computer
via the USB or FireWire port, for instance.

MATAA works fine for me, but I am sure other users will find a few rough spots that I am
not yet aware of. Also, there are applications that are not (yet) covered by MATAA. Instead
of trying to think of such applications myself and writing according programs, I decided
to let other users request, suggest, or even write new code to improve and expand on the
functionality of MATAA. This will hopefully result in a broad and ever growing range of
applications that are supported by MATAA ‘out of the box’. So, get in touch with me and
other MATAA users through the MATAA homepage mataa.sourceforge.net if you
need (or want) MATAA to do something you don’t know how to accomplish, or if you’ve
written code that expands the functionality to MATAA.

References
[1] Free Software Foundation (FSF). GNU General Public License, . URL http://www.

gnu.org/licenses/gpl.html.

[2] The Mathworks, Inc. URL http://www.mathworks.com.

[3] Free Software Foundation (FSF), . URL http://www.gnu.org.

[4] PortAudio. PortAudio – an open-source cross-platform audio API. URL http://www.
portaudio.com.

12

../../../../Matlab/MATAA_DEV/aX_paper/mataa.sourceforge.net
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.mathworks.com
http://www.gnu.org
http://www.portaudio.com
http://www.portaudio.com

[5] Joseph D’Appolito. Testing Loudspeakers. Audio Amateur Press, Peterborough, New
Hampshire, USA, 1998.

[6] Instruction Book – QUAD 22 Control Unit and QUAD II Power Amplifier. Quad, 1964.

13

	How MATAA works
	MATAA soundcard requirements
	MATLAB and Octave

	Using MATAA
	RC high-pass filter
	Loudspeaker impedance
	Acoustic loudspeaker analyses
	Amplifier distortion

	Closing remarks

