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MATAA: A Free Computer-Based 
Audio Analysis System

By Matthias S. Brennwald

Discover this useful software tool, which acts as a 
versatile audio analyzer.

Article prepared for www.audioXpress.com

I needed an audio analyzer to test my loud-
speakers and amplifiers. However, the systems 
available on the market are either not flexible 
enough for my needs, don’t work with my pre-

ferred computer platform, or cost more than what 
I am willing to spend. I therefore started a new 
DIY project “building” my own audio analysis 
system using my computer’s soundcard. After a 
while, the project grew bigger and I realized that 
I produced a very versatile and powerful audio 
analyzer, which I call “Mat’s Audio Analyzer” 
(MATAA).

The operating mode of MATAA is 
the same as with many other computer-
based audio analysis systems. Apart from 
that, however, MATAA is a little differ-
ent from most of these systems in many 
ways. For instance: 

1. MATAA does not rely on proprie-
tary hardware (such as an expansion 
card or a “switch box”) to handle the 
sound input/output and the electri-
cal connections to the device under 
test (DUT). In contrast, you can use 
whatever soundcard, cables, switch-
es, plugs, amplifiers, and so on that 
you think are appropriate for your 
needs.

2. MATAA does not rely on a spe-
cific computer platform, because 
MATAA runs from within MAT-
LAB or GNU Octave. These “num-
ber-crunching” programs run on 
virtually all current platforms (keep 

reading if you are not familiar with 
MATLAB or Octave). 

3. MATAA is free software released 
under the GNU General Public Li-
cense1 (GPL). You are free to study 
the source code, adapt it to your 
needs, and release your improved 
version under the GPL. You can 
download MATAA from www.au-
dioroot.net/mataa.html. 

MATAA is essentially a collection of 
MATLAB/Octave programs, which pro-
vide the building blocks for analysis pro-
cedures to test all kinds of audio devices. 
Furthermore, MATAA contains ready-
made scripts using these building blocks 
to conduct typical analyses and tests (e.g., 
to measure the impulse response and the 
frequency response of a loudspeaker). 
Alternatively, you can design specific test 
routines to efficiently analyze virtually 
anything that can be analyzed with audio 
test signals. 

HOW MATAA WORKS
Similar to most other computer-based 
audio analysis systems, MATAA feeds a 
test signal to the DUT and simultane-
ously records its response signal, which 
is then analyzed as desired (see Fig. 1, 
which I will explain in more detail). One 
notable strength of MATAA is that you 
can use MATLAB/Octave to generate 

any kind of test signal and then feed it to 
the DUT. Together with the wide range 
of MATLAB/Octave tools for data pro-
cessing and analysis, this allows carrying 
out virtually any analysis you can think 
of. 

MATAA does not have a whiz-bang 
graphical user interface. While this may 
seem a bit anachronistic for today’s 
computer software, the lack of a graphi-
cal user interface is one of the reasons 
MATAA is so flexible. Have you ever 
experienced a program that couldn’t do 
what you wanted because the corre-
sponding button was missing, although 
the functionality would have been built 
into the software? Not with MATAA. 

MATAA SOUNDCARD  
REQUIREMENTS
In principle, any soundcard that allows 
simultaneous sound input and output 
(“full duplex sound”) is suitable for use 
with MATAA. However, the quality of 
the soundcard will, of course, crucially 
determine the quality of the measured 
data. For instance, the maximum sam-
pling rate determines upper frequency 
limit; the signal/noise ratio and the sam-
pling bit depth determine the dynamic 
range; and, depending on the intended 
type of analysis, the number of input and 
output channels available may also be 
important (stereo soundcards are suitable 
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for the vast majority of possible applica-
tions). 

MATLAB AND OCTAVE
MATLAB and Octave are “number-
crunching” programs that provide an all-
in-one environment for analysis, process-
ing, and graphing of data. Both MAT-
LAB and Octave run on various com-
puter platforms and operating systems. 
They provide a powerful programming 
language, which, compared to many oth-
ers, is easy to learn and understand. Pro-
grams written for MATLAB are (large-
ly) compatible with Octave (and vice 
versa). While MATLAB and Octave are 
very similar, they differ in one important 
point: 

MATLAB is a commercial product 
by The MathWorks company2, whereas 
Octave is free software released by the 
GNU project3. 

One shortcoming of both MATLAB 
and Octave with respect to MATAA is 
their limited capabilities for sound input 
and output. While both MATLAB and 
Octave provide commands to play and 
record sound, these commands do not 
work on all operating systems. Further-
more, simultaneous sound input and out-
put, a prerequisite for MATAA, is not 
well implemented. 

Therefore, I wrote a short program 
called TestTone that handles the sound 
input and output for MATAA exter-
nally from MATLAB/Octave (Fig. 1). 
MATAA talks to TestTone from within 
MATLAB/Octave, so the MATAA user 
does not need to care about TestTone, 
which is based on PortAudio4, a free 
cross-platform library for sound input/
output. It is therefore straightforward 
to enable sound input and output for 
MATAA on all computer platforms sup-
ported by PortAudio.

At the time of this writing, I have 
compiled TestTone for MacOS X. Also, 
Sang Shu (sangshu@hotmail.com) has com-
piled TestTone for Windows (thanks, 
Shu!). MATAA therefore supports sound 
input and output on these platforms, but 
other platforms (e.g., Linux) are not yet 
supported. If someone agrees to compile 
TestTone for Linux or any other com-
puter platform and provide it to the pub-
lic through the MATAA website (with 
your nametag on it), you are more than 
welcome to do so!

USING MATAA
In this section, I will show how to oper-
ate MATAA and how MATAA works 
in real-world applications. I ran these 
examples using Octave, but the operation 
and results would have been exactly the 
same with MATLAB. I used an Apple 
PowerBook G4 laptop computer with its 
generic built-in soundcard, which sup-
ports various sampling rates in the range 
of 32–96kHz with a sample depth of 
up to 24 bits. By feeding sine signals of 
varying frequencies from an analog sig-
nal generator to the soundcard input and 
analyzing the digitized result, I found 
that this soundcard has an efficient anti-
aliasing filter, whose cutoff frequency is 
automatically adjusted to the sampling 
rate selected. 

RC HIGH-PASS FILTER
In this first example, I use MATAA to 
test a simple RC high-pass filter with 
R = 4.79kΩ and C = 220nF. While not 
rocket science, this example serves as 
a good introduction to how MATAA 
works. Figure 2 shows the RC filter and 

how it is connected to the soundcard.
To start, I demonstrate how to feed a 

square-wave signal to a simple RC filter 
and measure its output signal. Using the 
MATAA command mataa_signal_genera-
tor, I produced a 0.1s long square-wave 
signal with a frequency of 1kHz and a 
sampling rate of 96kHz by typing the 
following command at the MATLAB/
Octave prompt: 

s = mataa_signal_generator(’square’,9600
0,0.1,1000);

The samples of the square-wave signal 
are now stored in the MATLAB/Octave 
variable s, but the signal has not yet been 
fed to the soundcard or the RC filter.

The mataa_measure_signal_response 
command feeds the square-wave signal 
to the input of the RC filter and simulta-
neously records the response signal at the 
output of the filter: 

res = mataa_measure_signal_response 
(s,96000);

The samples of the response signal are 
now stored in the variable res. Figure 
2 shows one cycle of the response sig-
nal (this figure was produced using the 
mataa_plot_signal command, but you could 
just as well use the standard MATLAB/
Octave plot command). 

Apart from the slight high-frequency 
ringing, the shape of the signal looks 
exactly as expected for the RC high-
pass filter. The high-frequency ringing 
is due to the steep anti-aliasing filter of 
my soundcard (I will discuss how to deal 
with signal distortions due to the anti-
aliasing filter or other artifacts introduced 
by the sound hardware). In summary, 
typing only three commands was enough 
to produce a test signal, feed it to the RC 
filter, record the response signal, and plot 
the result.

In the next step, I demonstrate how to 
measure the impulse response of the filter 
and how to determine the transfer func-
tion of the filter in the frequency domain. 
By typing the following three commands, 
MATAA measures the impulse response 
using a white noise signal and calculates 
the frequency response (magnitude and 
phase) of the RC filter:

w = mataa_signal_generator(’white’, 
96000,0.3); 
h = mataa_measure_IR(w,96000); 
[mag,phase,f] = mataa_IR_to_FR(h,96000); 
On the first line, a white-noise signal 

w with a sampling rate of 96kHz and a 

FIGURE 2: RC filter analysis. Top: 
setup of the RC filter and sound 
hardware. Center: squarewave 
response of the RC filter. Bottom: 
frequency response of the RC filter 
(magnitude and phase corrected for 
excess phase).
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length of 0.3s is generated. On the sec-
ond line, this white-noise signal is used 
to measure the impulse response of the 
RC filter using the MATAA command 
mataa_measure_IR. This command first 
feeds the signal in w to the RC filter 
and records the response of the RC filter 
(analogous to the prior square-wave test). 
The response signal is then deconvolved 
from the original signal (w), which re-
sults in the impulse response h of the RC 
filter. 

On the third line, mataa_IR_to_FR is 
used to transform the time-domain im-
pulse response to the frequency response 
using the Fourier transform (magnitude 
mag and phase phase as function of fre-
quency f ). The resulting frequency re-
sponse (Fig. 2) corresponds to the expect-
ed first-order high-pass transfer function 
of the RC filter.

Note that the computer needs some 
time to process and feed the test signal 
data to the sound output. Also, while not 
the case in this example, the signal may 
be further delayed by the DUT itself 
or due to long signal travel times in the 
measurement setup (e.g., the time needed 
for a signal to travel from a loudspeaker 
to a microphone). If the signal recording 
stops immediately after the last sample of 
the test signal has been output from the 
audio output, the recoding of the DUT’s 
output signal will therefore be truncated. 
By default, MATAA therefore extends 
the recording of the test signal by 0.1s 
before and after the test-signal output to 
avoid cutting off the recording (different 
delay values may be specified). 

In the frequency domain, this delay 
in the DUT output signal corresponds 
to a phase shift that increases linearly 
with frequency. In the RC-filter example, 
the true phase shift is virtually zero at 
frequencies much higher than the cutoff 
frequency. You can therefore compute the 
excess phase due to the signal delay from 
the measured phase and the expected 
(zero) phase. 

By specifying the frequency range 
where phase is expected to be zero (e.g., 
5–20kHz), the following command re-
moves the excess phase, leaving only the 
phase response of the RC filter (the so-
called minimum phase, Fig. 2): 

phase = mataa_phase_remove_trend 
(phase,f,5000,20000);
As an alternative, MATAA also allows 

using the Hilbert transform to determine 
the minimum phase from the magnitude 
of the frequency response. 

LOUDSPEAKER IMPEDANCE
Figure 3 shows the measurement setup 
to measure the electrical impedance of a 
loudspeaker5 (or, in fact, anything else). 
The sound output is connected to a se-
ries combination of the loudspeaker and 
a resistor, which acts as an impedance 
reference. The value of the reference re-
sistor should be of the same order as the 
impedance of the loudspeaker. 

In contrast to the setup in Fig. 2, both 
stereo channels of the sound input are 
used. One channel records the signal 
voltage across the loudspeaker (DUT 
channel), while the other records the sig-
nal voltage at the sound output, which 
will be used as a reference (REF chan-
nel). By default, MATAA allocates the 
left channel to the DUT and the right 
channel to REF. 

The purpose of using the second 
channel (REF) is to make the analysis 
immune to distortions of the original test 
signal by the sound output electronics. 
Instead of comparing the DUT signal 
to the original test signal generated by 
MATAA (as in the RC-filter example), 
the DUT signal is compared to the REF 
signal, i.e., to the true signal applied to 
the DUT. 

Many soundcards are not designed 
to deliver undistorted output when di-
rectly driving loudspeakers or similar 
low-impedance loads. The REF signal 
may therefore be distorted with respect 
to the original test signal generated by 
MATAA. Furthermore, as previously il-
lustrated, the anti-aliasing filter of the 
sound input may also distort the test 
signal. You can sidestep this distortion 
problem by comparing the DUT signal 
to the REF signal rather than the origi-
nal MATAA signal, because the sound-
card distortion affects both the DUT 
and REF signals in the same way.

The reference resistor R and the loud-
speaker with its impedance Z constitute 
a voltage divider between the soundcard 
output and ground (Fig. 3). UA is the 
voltage between point A and ground (i.e., 
the voltage across the loudspeaker). UB is 
the voltage between point B and ground 
(i.e., the voltage across the loudspeaker 
and the reference resistor). The ratio of 
these two voltages is UB/UA = (R+Z)/Z. 
Solving this equation for the loudspeaker 
impedance gives:

Z R
U

U
A

B UA

=
−

For a sinusoidal test signal, UA and UB 
reflect the amplitudes of the sine signals 
at points A and B. Note that the sine 
signals may show a phase shift due to 
the complex nature of the loudspeak-
er impedance. Mathematically, this is 
expressed with complex values UA and 
UB. For non-sinusoidal signals, you can 
compute UA and UB as a function of 
frequency using the Fourier transform of 
the signals measured at points A and B. 
Inserting these frequency-dependent val-
ues in the previous equation then yields 
the loudspeaker impedance Z as a func-
tion of frequency5.

This procedure to determine the fre-
quency-dependent impedance of a loud-
speaker (or any other DUT) is imple-
mented in the MATAA tool mataa_mea-
sure_impedance. With a reference resistor 
R = 8.6Ω (that’s what came out of my 
parts box), the following command mea-
sures the loudspeaker impedance (mag-
nitude mag and phase phase) in the fre-
quency range from 10–10000Hz: 

[mag,phase,f] = mataa_measure_imped-
ance(10,10000,8.6);
By default, this command uses a sine-

FIGURE 3: Loudspeaker imped-
ance analysis. Top: measurement 
setup. Bottom: result of imped-
ance measurement for a Fostex 
FE108∑ driver in free air.
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sweep test signal of appropriate length, 
selects a suitable sampling rate, and 
smoothes the result in 1/48-octave bands 
(other values may be specified). The 
smoothing attenuates the noise that will 
be picked up by the loudspeaker, because 
it also acts as a microphone. Figure 3, 
generated with the mataa_plot_imped-
ance command, shows the result for a 
Fostex FE108∑ full-range driver oper-
ated under free-air conditions. 

ACOUSTIC LOUDSPEAKER  
ANALYSES
In this section, I demonstrate how to 
measure the impulse response of a loud-
speaker, and how to calculate the step re-
sponse, the anechoic frequency response, 
and a cumulative spectral decay diagram 
(“waterfall plot”) of the loudspeaker. I 
recommend the book by Joe D’Appolito5 
for a thorough and well-written intro-
duction to the methods and concepts 
involved in these analyses (and every-
thing else you ever wanted to know about 
loudspeaker testing).

Figure 4 shows the setup to measure 
the impulse response of a loudspeak-
er (the same Fostex FE108∑ as before). 
Both the microphone (a Behringer 
ECM8000) and the loudspeaker were 
mounted 90cm above the floor, with 
a distance of 100cm in between each 
other. Note that the loudspeaker is driven 
through a power amplifier to buffer the 
soundcard output signal. In contrast to 
the impedance analysis, calibration of the 
analysis using the REF channel is there-
fore not mandatory. Hence, for the sake 
of simplicity, I decided not to use the 
REF channel, although MATAA does 
allow calibrating the impulse-response 
measurement using the REF channel.

Acoustic analyses can be prone to 
environmental noise. I therefore used a 
maximum length sequence (MLS) test 
signal to achieve a good signal/noise ratio 
for the impulse-response measurement. 
Other signals such as pink or white noise 
are suitable, too. 

The following commands first produce 
an MLS test signal (s, with a length of 
214 - 1 = 16383 samples), which is then 
used to measure the impulse response h 
of the loudspeaker using a sampling rate 
of 96kHz (analogous to the RC-filter 
example): 

s = mataa_signal_generator(’MLS’,96000

,0,14); 
h = mataa_measure_IR(s,96000);

Note that the impulse response in h will 
show a delay due to the travel time of 
the test signal from the loudspeaker to 
the microphone (about 2.92ms for a dis-
tance of 100cm between the driver and 
the microphone). 

The following two commands remove 
this delay and shorten the impulse re-
sponse to a length of 5ms: 

t0 = mataa_guess_IR_start(h,96000); 
h = mataa_signal_crop(h,96000,t0,t0+ 
0.005);

On the first line, the start time (t0) 
of the impulse response starts is de-
termined automatically. On the second 
line, the impulse response is cropped to 
the range between t0 and t0+5 ms.

Figure 4 shows the resulting impulse 
response, which is followed by echoes 
from the floor and the walls of my room. 
The first echo occurs at about 3.1ms, 
which corresponds to the time delay of 
the echo from the floor with respect to 
the direct sound from the loudspeaker. 
You must remove the echoes to deter-
mine the anechoic frequency response.

The simplest method to do this is 
to shorten the impulse response to the 
time range that is free of room echoes 
(i.e., 0–3ms): 

h = mataa_signal_crop(h,96000,0,0.003); 
Alternatively, MATAA also provides a 
tool to multiply the impulse response 
by various types of window functions 
in order to attenuate the echoes while 
retaining the anechoic part of the signal. 
For the sake of simplicity, however, I 
won’t discuss signal windowing here.

The impulse response is now free of 
room echoes, but still needs to be cor-
rected for the frequency response of the 
microphone. This is done as follows: 

h = mataa_microphone_correct_
IR(’Behringer_ECM8000’,h,96000);

This command reads the frequency 
response of the microphone from the 
specified ASCII file and uses this data 
to correct the impulse response. 

After this correction, the echo-free 
impulse-response can now serve as the 
basis for various analyses, such as those 
shown in Fig. 4: 
• Step response: hs = mataa_IR_to_

SR(h,96000); 
• Frequency response (anechoic) 

smoothed to 1/24 octave bands (mag-

FIGURE 4: Acoustic loudspeaker 
analysis. From top to bottom: mea-
surement setup (P: power amplifier, 
M: microphone amplifier, LS: Fostex 
FE108∑ loudspeaker in free air), im-
pulse response (with room echoes), 
step response (with echoes trun-
cated, note the different time scale), 
anechoic frequency response, and 
cumulative spectral decay diagram 
(“waterfall plot”).
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nitude and phase): [mag,phase,f] = 
mataa_IR_to_FR(h,96000,1/24); 

• Cumulative spectral decay dia-
gram (waterfall plot) with 30 lines 
covering the spectral decay of 
the impulse response during the 
full anechoic range (3 ms): T = lin-
space(0,0.003,30); [mag,f,T] = mataa_IR_
to_CSD(h,96000,T,1/24); 

AMPLIFIER DISTORTION
Figure 5 shows the measurement setup 
to analyze the harmonic distortion of an 
amplifier. The amplifier output is con-
nected to a load resistor RL = 7.6Ω and 
a potentiometer RG = 4.7kΩ to attenu-
ate the output signal of the amplifier 
(otherwise, the sound input would be 
overloaded due to the gain of the ampli-
fier). Again, I chose these values because 
that’s what came out of my box. 

MATAA provides the mataa_mea-
sure_HD(f1,T,fs,N) program to measure 
the harmonic distortion products and 
total harmonic distortion (THD) at a 
given base frequency. This command 
feeds a sine signal to the DUT (f1 is the 
frequency of the sine, T is its length, fs 
is the sampling rate, N is the number of 
harmonics to be included in the analy-
sis). The program then determines the 
Fourier spectra of the resulting DUT 
and REF signals at the soundcard input. 
These spectra are then normalized such 
that the amplitude of the base frequen-
cy (f1) is k1 = 100%. 

To correct for possible distortion ar-
tifacts introduced by the soundcard, the 
REF spectrum is subtracted from the 
DUT spectrum, yielding in the “true” 
distortion spectrum of the DUT. Final-
ly, the program returns the amplitudes 
k2,k3, . . . ,kN of the harmonics and the 
THD, which is defined here as the geo-
metric sum of the harmonics:

THD =

 k k kN2
2

3
2 2+ + +...  

(note that other definitions exist). 
In the current example, I demonstrate 

how to measure THD and the first four 
harmonics (k2,k3, . . . ,k5) as a function 
of frequency. To this end, the distor-
tion analysis is repeated at 32 different 
frequencies in the range of 30–9600Hz. 
I accomplished this by putting the fol-
lowing commands into a MATLAB/
Octave script file:

Nf = 32; Nk = 5; fs=96000; 
f = logspace(log10(30),log10(9600),Nf); thd 
= repmat(NaN,1,Nf); 
k = repmat(NaN,Nk,Nf); for i=1:Nf 
[thd(i),k(:,i)] = mataa_measure_
HD(f(i),0.1,96000,Nk); end 

On the first line, the number of fre-
quencies at which distortion is to be 
analyzed (Nf) is set to 32, the number 
of harmonics to be analyzed (Nk) is 
set to 5, and the sampling rate (fs) is 
set to 96kHz. On the second line, a 
list (f) of the frequency values within 
the range of 30–9600Hz is produced 
(the frequeny values are distributed 
logarithmically). On the third line, the 
variables to hold the THD data (thd) 
and the distortion harmonics (k) are 
initialized with empty values (NaN). 
The last three lines constitute a loop 
in which the THD and distortion har-
monics are analyzed repeatedly at the 
increasing frequencies in f. 

I used this MATLAB/Octave script 
to analyze the distortion of my Quad 
II tube amplifier. I set the output 
power to 13.9W (at higher power, clip-
ping becomes visible on the scope). 
The result of the distortion analysis is 
shown in Fig. 5. Note that the resulting 
THD is nicely in line with the speci-
fied6 THD value of ~0.2% at 700Hz 
and 12W output. 

CLOSING REMARKS
The versatility of MATAA and the 
lack of a graphical user interface may 
(wrongly) suggest that operation is 
cumbersome and less streamlined than 
with other computer-based audio an-
alyzers. In contrast, these peculiari-
ties are one of the reasons I prefer 
MATAA over other audio analysis 
systems. On the one hand, you can 
have MATAA conduct virtually any 
analysis you can think of, while on the 
other hand, you can save the necessary 
steps for a specific analysis to a MAT-
LAB/Octave script file so that you 
can repeat the analysis by simply run-
ning this script. In addition, MATAA 
already includes several scripts that 
automatically conduct some typical 
analyses. 

MATAA therefore offers “plug-
and-play” for these applications and 
allows new users to become famil-

iar with MATAA. Finally, from my 
own experience, I have the impression 
that MATAA forces the user to think 
first about how to conduct the analysis 
best. This ultimately leads to a bet-
ter understanding of the analysis and 
therefore improves the quality of the 
results and their interpretation. 

I would like to stress that you 
shouldn’t abuse your soundcard. Short-
ening the soundcard output, for exam-
ple, usually does not destroy anything, 
but too much voltage at the soundcard 
input will. While a few volts won’t do 
any harm, I have learned the hard way 
that a capacitor with a maximum volt-
age of 100V is not suitable to protect 
the soundcard from a 400V B+ voltage 
in a tube amplifier (I tried to analyze 
the ripple voltage of the B+). The best 
way to protect your soundcard is to 
think twice before applying a signal 
to it. 

Also, inserting a voltage limiter just 
before the soundcard input may be a 
good idea. For instance, grounding the 
soundcard input through two series-
connected 5V zener diodes with re-
versed polarity will limit the signal to 
±5V (but the zeners will also blow up 

FIGURE 5: Distortion analysis. Top: 
measurement setup (RL: load resis-
tor, RG: potentiometer to attenuate 
and adjust the signal level for the 
sound input). Bottom: result of dis-
tortion measurement for my Quad II 
tube amplifier.



6  audioXpress   2007    www.audioXpress .com

if too much voltage is applied for too 
long). Finally, if you are paranoid, you 
can minimize the risk of destroying 
the entire motherboard of your com-
puter by using an external soundcard 
connected to your computer via the 
USB or FireWire port, for instance.

MATAA works fine for me, but I 
am sure other users will find a few 
rough spots that I am not yet aware 
of. Also, there are applications that are 
not (yet) covered by MATAA. Instead 
of trying to think of such applications 
myself and writing suitable programs, 
I decided to let other users request, 
suggest, or even write new code to 
improve and expand on the function-
ality of MATAA. I hope this results 
in a broad and ever-growing range 
of applications that are supported by 
MATAA “out of the box.” So get in 
touch with me and other MATAA 
users through the MATAA homepage 
www.audioroot.net/mataa.html if you need 
(or want) MATAA to do something 
you don’t know how to accomplish, or 
if you’ve written code that expands the 
functionality of MATAA.      aX
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