
audioXpress 2007 1

MATAA: A Free Computer-Based
Audio Analysis System

By Matthias S. Brennwald

Discover this useful software tool, which acts as a
versatile audio analyzer.

Article prepared for www.audioXpress.com

I needed an audio analyzer to test my loud-
speakers and amplifiers. However, the systems
available on the market are either not flexible
enough for my needs, don’t work with my pre-

ferred computer platform, or cost more than what
I am willing to spend. I therefore started a new
DIY project “building” my own audio analysis
system using my computer’s soundcard. After a
while, the project grew bigger and I realized that
I produced a very versatile and powerful audio
analyzer, which I call “Mat’s Audio Analyzer”
(MATAA).

The operating mode of MATAA is
the same as with many other computer-
based audio analysis systems. Apart from
that, however, MATAA is a little differ-
ent from most of these systems in many
ways. For instance:

1. MATAA does not rely on proprie-
tary hardware (such as an expansion
card or a “switch box”) to handle the
sound input/output and the electri-
cal connections to the device under
test (DUT). In contrast, you can use
whatever soundcard, cables, switch-
es, plugs, amplifiers, and so on that
you think are appropriate for your
needs.

2. MATAA does not rely on a spe-
cific computer platform, because
MATAA runs from within MAT-
LAB or GNU Octave. These “num-
ber-crunching” programs run on
virtually all current platforms (keep

reading if you are not familiar with
MATLAB or Octave).

3. MATAA is free software released
under the GNU General Public Li-
cense1 (GPL). You are free to study
the source code, adapt it to your
needs, and release your improved
version under the GPL. You can
download MATAA from www.au-
dioroot.net/mataa.html.

MATAA is essentially a collection of
MATLAB/Octave programs, which pro-
vide the building blocks for analysis pro-
cedures to test all kinds of audio devices.
Furthermore, MATAA contains ready-
made scripts using these building blocks
to conduct typical analyses and tests (e.g.,
to measure the impulse response and the
frequency response of a loudspeaker).
Alternatively, you can design specific test
routines to efficiently analyze virtually
anything that can be analyzed with audio
test signals.

HOW MATAA WORKS
Similar to most other computer-based
audio analysis systems, MATAA feeds a
test signal to the DUT and simultane-
ously records its response signal, which
is then analyzed as desired (see Fig. 1,
which I will explain in more detail). One
notable strength of MATAA is that you
can use MATLAB/Octave to generate

any kind of test signal and then feed it to
the DUT. Together with the wide range
of MATLAB/Octave tools for data pro-
cessing and analysis, this allows carrying
out virtually any analysis you can think
of.

MATAA does not have a whiz-bang
graphical user interface. While this may
seem a bit anachronistic for today’s
computer software, the lack of a graphi-
cal user interface is one of the reasons
MATAA is so flexible. Have you ever
experienced a program that couldn’t do
what you wanted because the corre-
sponding button was missing, although
the functionality would have been built
into the software? Not with MATAA.

MATAA SOUNDCARD
REQUIREMENTS
In principle, any soundcard that allows
simultaneous sound input and output
(“full duplex sound”) is suitable for use
with MATAA. However, the quality of
the soundcard will, of course, crucially
determine the quality of the measured
data. For instance, the maximum sam-
pling rate determines upper frequency
limit; the signal/noise ratio and the sam-
pling bit depth determine the dynamic
range; and, depending on the intended
type of analysis, the number of input and
output channels available may also be
important (stereo soundcards are suitable

Tube, Solid State,
Loudspeaker Technology

2 audioXpress 2007 www.audioXpress .com

for the vast majority of possible applica-
tions).

MATLAB AND OCTAVE
MATLAB and Octave are “number-
crunching” programs that provide an all-
in-one environment for analysis, process-
ing, and graphing of data. Both MAT-
LAB and Octave run on various com-
puter platforms and operating systems.
They provide a powerful programming
language, which, compared to many oth-
ers, is easy to learn and understand. Pro-
grams written for MATLAB are (large-
ly) compatible with Octave (and vice
versa). While MATLAB and Octave are
very similar, they differ in one important
point:

MATLAB is a commercial product
by The MathWorks company2, whereas
Octave is free software released by the
GNU project3.

One shortcoming of both MATLAB
and Octave with respect to MATAA is
their limited capabilities for sound input
and output. While both MATLAB and
Octave provide commands to play and
record sound, these commands do not
work on all operating systems. Further-
more, simultaneous sound input and out-
put, a prerequisite for MATAA, is not
well implemented.

Therefore, I wrote a short program
called TestTone that handles the sound
input and output for MATAA exter-
nally from MATLAB/Octave (Fig. 1).
MATAA talks to TestTone from within
MATLAB/Octave, so the MATAA user
does not need to care about TestTone,
which is based on PortAudio4, a free
cross-platform library for sound input/
output. It is therefore straightforward
to enable sound input and output for
MATAA on all computer platforms sup-
ported by PortAudio.

At the time of this writing, I have
compiled TestTone for MacOS X. Also,
Sang Shu (sangshu@hotmail.com) has com-
piled TestTone for Windows (thanks,
Shu!). MATAA therefore supports sound
input and output on these platforms, but
other platforms (e.g., Linux) are not yet
supported. If someone agrees to compile
TestTone for Linux or any other com-
puter platform and provide it to the pub-
lic through the MATAA website (with
your nametag on it), you are more than
welcome to do so!

USING MATAA
In this section, I will show how to oper-
ate MATAA and how MATAA works
in real-world applications. I ran these
examples using Octave, but the operation
and results would have been exactly the
same with MATLAB. I used an Apple
PowerBook G4 laptop computer with its
generic built-in soundcard, which sup-
ports various sampling rates in the range
of 32–96kHz with a sample depth of
up to 24 bits. By feeding sine signals of
varying frequencies from an analog sig-
nal generator to the soundcard input and
analyzing the digitized result, I found
that this soundcard has an efficient anti-
aliasing filter, whose cutoff frequency is
automatically adjusted to the sampling
rate selected.

RC HIGH-PASS FILTER
In this first example, I use MATAA to
test a simple RC high-pass filter with
R = 4.79kΩ and C = 220nF. While not
rocket science, this example serves as
a good introduction to how MATAA
works. Figure 2 shows the RC filter and

how it is connected to the soundcard.
To start, I demonstrate how to feed a

square-wave signal to a simple RC filter
and measure its output signal. Using the
MATAA command mataa_signal_genera-
tor, I produced a 0.1s long square-wave
signal with a frequency of 1kHz and a
sampling rate of 96kHz by typing the
following command at the MATLAB/
Octave prompt:

s = mataa_signal_generator(’square’,9600
0,0.1,1000);

The samples of the square-wave signal
are now stored in the MATLAB/Octave
variable s, but the signal has not yet been
fed to the soundcard or the RC filter.

The mataa_measure_signal_response
command feeds the square-wave signal
to the input of the RC filter and simulta-
neously records the response signal at the
output of the filter:

res = mataa_measure_signal_response
(s,96000);

The samples of the response signal are
now stored in the variable res. Figure
2 shows one cycle of the response sig-
nal (this figure was produced using the
mataa_plot_signal command, but you could
just as well use the standard MATLAB/
Octave plot command).

Apart from the slight high-frequency
ringing, the shape of the signal looks
exactly as expected for the RC high-
pass filter. The high-frequency ringing
is due to the steep anti-aliasing filter of
my soundcard (I will discuss how to deal
with signal distortions due to the anti-
aliasing filter or other artifacts introduced
by the sound hardware). In summary,
typing only three commands was enough
to produce a test signal, feed it to the RC
filter, record the response signal, and plot
the result.

In the next step, I demonstrate how to
measure the impulse response of the filter
and how to determine the transfer func-
tion of the filter in the frequency domain.
By typing the following three commands,
MATAA measures the impulse response
using a white noise signal and calculates
the frequency response (magnitude and
phase) of the RC filter:

w = mataa_signal_generator(’white’,
96000,0.3);
h = mataa_measure_IR(w,96000);
[mag,phase,f] = mataa_IR_to_FR(h,96000);
On the first line, a white-noise signal

w with a sampling rate of 96kHz and a

FIGURE 2: RC filter analysis. Top:
setup of the RC filter and sound
hardware. Center: squarewave
response of the RC filter. Bottom:
frequency response of the RC filter
(magnitude and phase corrected for
excess phase).

audioXpress 2007 3

length of 0.3s is generated. On the sec-
ond line, this white-noise signal is used
to measure the impulse response of the
RC filter using the MATAA command
mataa_measure_IR. This command first
feeds the signal in w to the RC filter
and records the response of the RC filter
(analogous to the prior square-wave test).
The response signal is then deconvolved
from the original signal (w), which re-
sults in the impulse response h of the RC
filter.

On the third line, mataa_IR_to_FR is
used to transform the time-domain im-
pulse response to the frequency response
using the Fourier transform (magnitude
mag and phase phase as function of fre-
quency f). The resulting frequency re-
sponse (Fig. 2) corresponds to the expect-
ed first-order high-pass transfer function
of the RC filter.

Note that the computer needs some
time to process and feed the test signal
data to the sound output. Also, while not
the case in this example, the signal may
be further delayed by the DUT itself
or due to long signal travel times in the
measurement setup (e.g., the time needed
for a signal to travel from a loudspeaker
to a microphone). If the signal recording
stops immediately after the last sample of
the test signal has been output from the
audio output, the recoding of the DUT’s
output signal will therefore be truncated.
By default, MATAA therefore extends
the recording of the test signal by 0.1s
before and after the test-signal output to
avoid cutting off the recording (different
delay values may be specified).

In the frequency domain, this delay
in the DUT output signal corresponds
to a phase shift that increases linearly
with frequency. In the RC-filter example,
the true phase shift is virtually zero at
frequencies much higher than the cutoff
frequency. You can therefore compute the
excess phase due to the signal delay from
the measured phase and the expected
(zero) phase.

By specifying the frequency range
where phase is expected to be zero (e.g.,
5–20kHz), the following command re-
moves the excess phase, leaving only the
phase response of the RC filter (the so-
called minimum phase, Fig. 2):

phase = mataa_phase_remove_trend
(phase,f,5000,20000);
As an alternative, MATAA also allows

using the Hilbert transform to determine
the minimum phase from the magnitude
of the frequency response.

LOUDSPEAKER IMPEDANCE
Figure 3 shows the measurement setup
to measure the electrical impedance of a
loudspeaker5 (or, in fact, anything else).
The sound output is connected to a se-
ries combination of the loudspeaker and
a resistor, which acts as an impedance
reference. The value of the reference re-
sistor should be of the same order as the
impedance of the loudspeaker.

In contrast to the setup in Fig. 2, both
stereo channels of the sound input are
used. One channel records the signal
voltage across the loudspeaker (DUT
channel), while the other records the sig-
nal voltage at the sound output, which
will be used as a reference (REF chan-
nel). By default, MATAA allocates the
left channel to the DUT and the right
channel to REF.

The purpose of using the second
channel (REF) is to make the analysis
immune to distortions of the original test
signal by the sound output electronics.
Instead of comparing the DUT signal
to the original test signal generated by
MATAA (as in the RC-filter example),
the DUT signal is compared to the REF
signal, i.e., to the true signal applied to
the DUT.

Many soundcards are not designed
to deliver undistorted output when di-
rectly driving loudspeakers or similar
low-impedance loads. The REF signal
may therefore be distorted with respect
to the original test signal generated by
MATAA. Furthermore, as previously il-
lustrated, the anti-aliasing filter of the
sound input may also distort the test
signal. You can sidestep this distortion
problem by comparing the DUT signal
to the REF signal rather than the origi-
nal MATAA signal, because the sound-
card distortion affects both the DUT
and REF signals in the same way.

The reference resistor R and the loud-
speaker with its impedance Z constitute
a voltage divider between the soundcard
output and ground (Fig. 3). UA is the
voltage between point A and ground (i.e.,
the voltage across the loudspeaker). UB is
the voltage between point B and ground
(i.e., the voltage across the loudspeaker
and the reference resistor). The ratio of
these two voltages is UB/UA = (R+Z)/Z.
Solving this equation for the loudspeaker
impedance gives:

Z R
U

U
A

B UA

=
−

For a sinusoidal test signal, UA and UB
reflect the amplitudes of the sine signals
at points A and B. Note that the sine
signals may show a phase shift due to
the complex nature of the loudspeak-
er impedance. Mathematically, this is
expressed with complex values UA and
UB. For non-sinusoidal signals, you can
compute UA and UB as a function of
frequency using the Fourier transform of
the signals measured at points A and B.
Inserting these frequency-dependent val-
ues in the previous equation then yields
the loudspeaker impedance Z as a func-
tion of frequency5.

This procedure to determine the fre-
quency-dependent impedance of a loud-
speaker (or any other DUT) is imple-
mented in the MATAA tool mataa_mea-
sure_impedance. With a reference resistor
R = 8.6Ω (that’s what came out of my
parts box), the following command mea-
sures the loudspeaker impedance (mag-
nitude mag and phase phase) in the fre-
quency range from 10–10000Hz:

[mag,phase,f] = mataa_measure_imped-
ance(10,10000,8.6);
By default, this command uses a sine-

FIGURE 3: Loudspeaker imped-
ance analysis. Top: measurement
setup. Bottom: result of imped-
ance measurement for a Fostex
FE108∑ driver in free air.

4 audioXpress 2007 www.audioXpress .com

sweep test signal of appropriate length,
selects a suitable sampling rate, and
smoothes the result in 1/48-octave bands
(other values may be specified). The
smoothing attenuates the noise that will
be picked up by the loudspeaker, because
it also acts as a microphone. Figure 3,
generated with the mataa_plot_imped-
ance command, shows the result for a
Fostex FE108∑ full-range driver oper-
ated under free-air conditions.

ACOUSTIC LOUDSPEAKER
ANALYSES
In this section, I demonstrate how to
measure the impulse response of a loud-
speaker, and how to calculate the step re-
sponse, the anechoic frequency response,
and a cumulative spectral decay diagram
(“waterfall plot”) of the loudspeaker. I
recommend the book by Joe D’Appolito5
for a thorough and well-written intro-
duction to the methods and concepts
involved in these analyses (and every-
thing else you ever wanted to know about
loudspeaker testing).

Figure 4 shows the setup to measure
the impulse response of a loudspeak-
er (the same Fostex FE108∑ as before).
Both the microphone (a Behringer
ECM8000) and the loudspeaker were
mounted 90cm above the floor, with
a distance of 100cm in between each
other. Note that the loudspeaker is driven
through a power amplifier to buffer the
soundcard output signal. In contrast to
the impedance analysis, calibration of the
analysis using the REF channel is there-
fore not mandatory. Hence, for the sake
of simplicity, I decided not to use the
REF channel, although MATAA does
allow calibrating the impulse-response
measurement using the REF channel.

Acoustic analyses can be prone to
environmental noise. I therefore used a
maximum length sequence (MLS) test
signal to achieve a good signal/noise ratio
for the impulse-response measurement.
Other signals such as pink or white noise
are suitable, too.

The following commands first produce
an MLS test signal (s, with a length of
214 - 1 = 16383 samples), which is then
used to measure the impulse response h
of the loudspeaker using a sampling rate
of 96kHz (analogous to the RC-filter
example):

s = mataa_signal_generator(’MLS’,96000

,0,14);
h = mataa_measure_IR(s,96000);

Note that the impulse response in h will
show a delay due to the travel time of
the test signal from the loudspeaker to
the microphone (about 2.92ms for a dis-
tance of 100cm between the driver and
the microphone).

The following two commands remove
this delay and shorten the impulse re-
sponse to a length of 5ms:

t0 = mataa_guess_IR_start(h,96000);
h = mataa_signal_crop(h,96000,t0,t0+
0.005);

On the first line, the start time (t0)
of the impulse response starts is de-
termined automatically. On the second
line, the impulse response is cropped to
the range between t0 and t0+5 ms.

Figure 4 shows the resulting impulse
response, which is followed by echoes
from the floor and the walls of my room.
The first echo occurs at about 3.1ms,
which corresponds to the time delay of
the echo from the floor with respect to
the direct sound from the loudspeaker.
You must remove the echoes to deter-
mine the anechoic frequency response.

The simplest method to do this is
to shorten the impulse response to the
time range that is free of room echoes
(i.e., 0–3ms):

h = mataa_signal_crop(h,96000,0,0.003);
Alternatively, MATAA also provides a
tool to multiply the impulse response
by various types of window functions
in order to attenuate the echoes while
retaining the anechoic part of the signal.
For the sake of simplicity, however, I
won’t discuss signal windowing here.

The impulse response is now free of
room echoes, but still needs to be cor-
rected for the frequency response of the
microphone. This is done as follows:

h = mataa_microphone_correct_
IR(’Behringer_ECM8000’,h,96000);

This command reads the frequency
response of the microphone from the
specified ASCII file and uses this data
to correct the impulse response.

After this correction, the echo-free
impulse-response can now serve as the
basis for various analyses, such as those
shown in Fig. 4:
• Step response: hs = mataa_IR_to_

SR(h,96000);
• Frequency response (anechoic)

smoothed to 1/24 octave bands (mag-

FIGURE 4: Acoustic loudspeaker
analysis. From top to bottom: mea-
surement setup (P: power amplifier,
M: microphone amplifier, LS: Fostex
FE108∑ loudspeaker in free air), im-
pulse response (with room echoes),
step response (with echoes trun-
cated, note the different time scale),
anechoic frequency response, and
cumulative spectral decay diagram
(“waterfall plot”).

audioXpress 2007 5

nitude and phase): [mag,phase,f] =
mataa_IR_to_FR(h,96000,1/24);

• Cumulative spectral decay dia-
gram (waterfall plot) with 30 lines
covering the spectral decay of
the impulse response during the
full anechoic range (3 ms): T = lin-
space(0,0.003,30); [mag,f,T] = mataa_IR_
to_CSD(h,96000,T,1/24);

AMPLIFIER DISTORTION
Figure 5 shows the measurement setup
to analyze the harmonic distortion of an
amplifier. The amplifier output is con-
nected to a load resistor RL = 7.6Ω and
a potentiometer RG = 4.7kΩ to attenu-
ate the output signal of the amplifier
(otherwise, the sound input would be
overloaded due to the gain of the ampli-
fier). Again, I chose these values because
that’s what came out of my box.

MATAA provides the mataa_mea-
sure_HD(f1,T,fs,N) program to measure
the harmonic distortion products and
total harmonic distortion (THD) at a
given base frequency. This command
feeds a sine signal to the DUT (f1 is the
frequency of the sine, T is its length, fs
is the sampling rate, N is the number of
harmonics to be included in the analy-
sis). The program then determines the
Fourier spectra of the resulting DUT
and REF signals at the soundcard input.
These spectra are then normalized such
that the amplitude of the base frequen-
cy (f1) is k1 = 100%.

To correct for possible distortion ar-
tifacts introduced by the soundcard, the
REF spectrum is subtracted from the
DUT spectrum, yielding in the “true”
distortion spectrum of the DUT. Final-
ly, the program returns the amplitudes
k2,k3, . . . ,kN of the harmonics and the
THD, which is defined here as the geo-
metric sum of the harmonics:

THD =

 k k kN2
2

3
2 2+ + +...

(note that other definitions exist).
In the current example, I demonstrate

how to measure THD and the first four
harmonics (k2,k3, . . . ,k5) as a function
of frequency. To this end, the distor-
tion analysis is repeated at 32 different
frequencies in the range of 30–9600Hz.
I accomplished this by putting the fol-
lowing commands into a MATLAB/
Octave script file:

Nf = 32; Nk = 5; fs=96000;
f = logspace(log10(30),log10(9600),Nf); thd
= repmat(NaN,1,Nf);
k = repmat(NaN,Nk,Nf); for i=1:Nf
[thd(i),k(:,i)] = mataa_measure_
HD(f(i),0.1,96000,Nk); end

On the first line, the number of fre-
quencies at which distortion is to be
analyzed (Nf) is set to 32, the number
of harmonics to be analyzed (Nk) is
set to 5, and the sampling rate (fs) is
set to 96kHz. On the second line, a
list (f) of the frequency values within
the range of 30–9600Hz is produced
(the frequeny values are distributed
logarithmically). On the third line, the
variables to hold the THD data (thd)
and the distortion harmonics (k) are
initialized with empty values (NaN).
The last three lines constitute a loop
in which the THD and distortion har-
monics are analyzed repeatedly at the
increasing frequencies in f.

I used this MATLAB/Octave script
to analyze the distortion of my Quad
II tube amplifier. I set the output
power to 13.9W (at higher power, clip-
ping becomes visible on the scope).
The result of the distortion analysis is
shown in Fig. 5. Note that the resulting
THD is nicely in line with the speci-
fied6 THD value of ~0.2% at 700Hz
and 12W output.

CLOSING REMARKS
The versatility of MATAA and the
lack of a graphical user interface may
(wrongly) suggest that operation is
cumbersome and less streamlined than
with other computer-based audio an-
alyzers. In contrast, these peculiari-
ties are one of the reasons I prefer
MATAA over other audio analysis
systems. On the one hand, you can
have MATAA conduct virtually any
analysis you can think of, while on the
other hand, you can save the necessary
steps for a specific analysis to a MAT-
LAB/Octave script file so that you
can repeat the analysis by simply run-
ning this script. In addition, MATAA
already includes several scripts that
automatically conduct some typical
analyses.

MATAA therefore offers “plug-
and-play” for these applications and
allows new users to become famil-

iar with MATAA. Finally, from my
own experience, I have the impression
that MATAA forces the user to think
first about how to conduct the analysis
best. This ultimately leads to a bet-
ter understanding of the analysis and
therefore improves the quality of the
results and their interpretation.

I would like to stress that you
shouldn’t abuse your soundcard. Short-
ening the soundcard output, for exam-
ple, usually does not destroy anything,
but too much voltage at the soundcard
input will. While a few volts won’t do
any harm, I have learned the hard way
that a capacitor with a maximum volt-
age of 100V is not suitable to protect
the soundcard from a 400V B+ voltage
in a tube amplifier (I tried to analyze
the ripple voltage of the B+). The best
way to protect your soundcard is to
think twice before applying a signal
to it.

Also, inserting a voltage limiter just
before the soundcard input may be a
good idea. For instance, grounding the
soundcard input through two series-
connected 5V zener diodes with re-
versed polarity will limit the signal to
±5V (but the zeners will also blow up

FIGURE 5: Distortion analysis. Top:
measurement setup (RL: load resis-
tor, RG: potentiometer to attenuate
and adjust the signal level for the
sound input). Bottom: result of dis-
tortion measurement for my Quad II
tube amplifier.

6 audioXpress 2007 www.audioXpress .com

if too much voltage is applied for too
long). Finally, if you are paranoid, you
can minimize the risk of destroying
the entire motherboard of your com-
puter by using an external soundcard
connected to your computer via the
USB or FireWire port, for instance.

MATAA works fine for me, but I
am sure other users will find a few
rough spots that I am not yet aware
of. Also, there are applications that are
not (yet) covered by MATAA. Instead
of trying to think of such applications
myself and writing suitable programs,
I decided to let other users request,
suggest, or even write new code to
improve and expand on the function-
ality of MATAA. I hope this results
in a broad and ever-growing range
of applications that are supported by
MATAA “out of the box.” So get in
touch with me and other MATAA
users through the MATAA homepage
www.audioroot.net/mataa.html if you need
(or want) MATAA to do something
you don’t know how to accomplish, or
if you’ve written code that expands the
functionality of MATAA. aX

REFERENCES
1. Free Software Foundation (FSF).

GNU General Public License. www.
gnu.org/licenses/gpl.html.

2. The Mathworks, Inc. www.mathworks.
com.

3. Free Software Foundation (FSF).
www.gnu.org.

4. PortAudio. PortAudio—an open-
source cross-platform audio API.
www.portaudio.com.

5. Joseph D’Appolito, Testing Loudspeak-
ers, Old Colony Sound Lab, 888-924-
9465, custserv@audioXpress.com.

6. Instruction Book—QUAD 22 Control
Unit and QUAD II Power Amplif ier.
Quad, 1964.

